

www.clutchprep.com

STATISTICS - CLUTCH CH.1: DISPLAYING NUMERIC DATA

GRAPHING QUALITATIVE DATA

EXAMPLE 1: Draw a frequency bar graph and a pie chart for the following data:

Car Make	Number of Owners
Toyota	10
Nissan	20
Honda	5
Ford	15

<u>PRACTICE 1</u>: Below are the ethnicities of the students in a particular Statistics class. Determine the relative frequency of each of the ethnicities.

Ethnicity					
Asian	White	Black	White		
Pacific Islander	White	Asian	Hispanic		
White	Hispanic	Hispanic	Black		
White	Hispanic	White	Black		
Asian	Asian	Black	White		
Hispanic	Black	White	Asian		

PRACTICE 2: Construct a pie chart to represent the data in Practice 1.

PRACTICE 3: Construct a bar graph for the following data set:

Favorite Summer Olympic Category

Swimming	25
Gymnastics	30
Track & Field	10
Diving	5
Other	20

STATISTICS - CLUTCH CH.1: DISPLAYING NUMERIC DATA

GRAPHING QUANTITATIVE DATA

- Quantitative data is data which includes observations that are
 - \rightarrow Example: money, time, size, length, etc.
- The graph that is capable of drawing a picture of this type of data is the _____
 - → Stemplots are another way of displaying ______ data

classes (class width = range/classes)

Step 2: Count and record the frequency of

Step 3: Graph which each bar representing the

Step 1: Separate each observation into stems and		
leaves (152: stem = 15, leaf = 2)		
Step 2: The left column is the stem (low to high)		
Step 3: The right column are the leaves		
corresponding to each stem starting with the		
lowest and moving away from the stem		

EXAMPLE 1: Using the following data, create a histogram using 4 classes and a stemplot.

Book Costs/Semester

observations in each class

frequency of each class

- 100 132
- 105 133
- 110 134
- 112 134
- 113 135
- 115 136
- 127 138
- 128 138

PRACTICE 1: Construct a stemplot of the following data from a business class:

GPA			
2.76	3.26	2.82	2.90
2.92	2.99	2.71	2.82
2.79	2.85	3.37	3.17
2.92	3.29	3.32	3.18

"

PRACTICE 2: Construct a histogram from the data in Practice 1. Use the following classes: 2.70 - 2.79, 2.80 - 2.89, etc.

<u>PRACTICE 3</u>: There are similarities and differences between the graphs in Practice 1 and Practice 2.

<u>PRACTICE 4</u>: The following data is from a retail store. Using 5 classes, determine the class widths of the data, and then construct a histogram for the data.

Phone Sales					
117	120	153	192	104	
104	111	102	127	168	
164	179	144	161	179	
185	129	154	102	105	
171	172	165	168	200	

