

CLUTCH

www.clutchprep.com

CONCEPT: ACIDITY OF PHENOLS

Phenols are substantially more acidic than typical alcohols due to the ______ effect.

• Recall, the more we can stabilize the conjugate base, the more acidic a compound will be.

Donating and Withdrawing Groups:

EXAMPLE: Predict which of the following would be the most acidic phenol.

O,P-Directors vs. Meta-Directors

The _____ position has a *much lessor effect* on acidity than the _____ and ____ positions.

• This is due to the resonance structures that are able to be produced by different positions

EXAMPLE: Predict which of the following would be the most acidic phenol.

EXAMPLE: Predict which of the following would be the most acidic phenol.

EXAMPLE: Predict which of the following would be the most acidic phenol.

PRACTICE: Rank the following phenols in order of increasing acidity.

$$\begin{array}{c} \mathsf{OH} \\ \mathsf{OH} \\ \mathsf{CH}_3 \\ \mathsf{C$$