

CLUTCH

www.clutchprep.com

CONCEPT: MATHMATICAL MEASRUMENTS

- Common statistical measurements are used in genetics to ______ phenotypes
 - ☐ The **mean** is an average of values
 - A **population** is all individuals within the group you're measuring
 - A **sample** is a representative subset of individuals in a population

EXAMPLE: Mean calculation

$$M = \frac{\Sigma(X)}{N}$$

Where $\Sigma = \text{Sum of}$

X = Individual data points

N = Sample size (number of data points)

- ☐ The **variance** measures how far a set of values is from the mean
 - Covariance measures how much variation is common to 2+ traits

EXAMPLE: Variance calculation

$$S^2 = \frac{\Sigma (X-M)^2}{n-1}$$

Where $\Sigma = \text{Sum of}$

X = Individual score

M = Mean of all scores

N =Sample size (number of scores)

- ☐ The **standard deviation** measures the amount of variation that exists within a set of data
 - **Standard error** measures the accuracy of the sample mean

EXAMPLE: Standard deviation calculation

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

- □ A **normal distribution** is the "bell curve" and visualizes the range of variation of a phenotype
 - Sometimes called a "frequency histogram" as it measures frequency of the trait on y axis

Bristle Number	Number of Individuals
1	2,
2	3,
3	9
4	29,
5	55,
6	18,
7	4,

- 1. The table shows a distribution of bristle numbers in a *Drosophila* population. What is the mean bristle number?
 - a. 4.7
 - b. 80
 - c. 562
 - d. 5.0

Bristle Number	Number of Individuals	(X-M) ²	Sum (X-M) ²
1	2	13.69	27.38
2	3	7.29	21.87
3	9	2.89	26.01
4	29	0.49	14.21
5	55	0.09	4.95
6	18	1.69	30.42
7	4	5.29	21.16

- 2. The table shows a distribution of bristle numbers in a *Drosophila* population. What is the variance?
 - a. 1.0
 - b. 1.2
 - c. 5.5
 - d. 3.0

GENETICS - CLUTCH

CH.20 QUANTITATIVE GENETICS

- 3. Using the variance calculated in problem #2, what is the standard deviation?
 - a. 1.0
 - b. 1.1
 - c. 2.3
 - d. 1.7

CONCEPT: TRAITS AND VA

There are many different types of inhe	erited
□ Continuous traits can take a	potentially infinite number of states within a range (Ex: height)
□ Categorical traits are traits t	nat can be sorted into discrete categories (Ex: purple or white flowers)
- Threshold traits are	expressed when people reach a threshold of genetic and environmental factors
- Ex: Type 2 dia	abetes
- Meristic traits (count	ing traits) are traits that can be divided into a range of discrete values
- Ex: Birds can	lay 1, 2, 3, or 4 eggs, but cannot lay 2.58 eggs
EXAMPLE:	
Example	Trait Type
Number of spots on a Dalmatian	
Human weight	
Foot size	
Cat Litter Sizes	
■ Traits can be inherited in □ Complex inheritance is inhe	ways ritance involving multiple genes and environmental factors
□ Simple inheritance is observ	red when progeny have standard Mendelian ratios (3:1, or 9:3:3:1)
	controlled via polygenic inheritance (inheritance) ng in a Mendelian fashion, and contribute to phenotype
□ Two types of alleles exist in p	olygenic inheritance
- Additive allele is an a	Illele that contributes and is added to the phenotype

- Non-additive allele is an allele that does not contribute to the phenotype

- There is a formula to predict how many genes ______ to a trait
 - $\ \square$ The formula $(1/4)^n$ calculates the F2 ratio of individuals expressing the parental phenotype (grandparents)
 - n = number of polygenes involved
 - □ The formula 2n+1 calculates the number of phenotypic categories observed

- 1. A trait controlled through polygenic inheritance was observed in a series of experiments. A brown eyed rabbit was mated with a blue eyed rabbit. 130 F₂ offspring were produced. 2 offspring had brown eyes and 2 offspring had blue eyes. How many polygenes control eye color in rabbits?
 - a. 1
 - b. 2
 - c. 3
 - d. 4

- 2. If a trait is controlled by 5 polygenes, how many phenotypic categories will be observed in the F2 generation?
 - a. 2
 - b. 5
 - c. 10
 - d. 11

GENETICS - CLUTCH

CH.20 QUANTITATIVE GENETICS

- 3. Polygenic inheritance is what type of inheritance?
 a. Simple

 - b. Complexc. Additive

 - d. Non-additive

CONCEPT: ANALYZING TRAIT VARIATION

- - \Box The formula used to calculate phenotypic variation is: $V_P = V_G + V_E$
 - Phenotypic variance = V_P
 - Genetic variance = V_G
 - Environmental variance = V_E
 - □ To determine the variation attributed to genetics you must control for ______
 - If you are looking for how much genetic variation contributes to stem height in one species of flowers then:
 - Plant multiple seeds from one species in a carefully controlled greenhouse (V_E= 0)
 - □ To determine the variation attributed to environment you must control for genetics
 - How much environmental variation contributes to stem height in one species of flowers?
 - Plant multiple genetically identical seeds in many different environmental conditions (V_G=0)

- 1. Which of the following represent trait variation caused from genetic variation?
 - a. V_P
 - b. V_G
 - $c. \quad V_{E}$
 - $d. \quad V_V$

- 2. If you wanted to identify what proportion of trait variation is due to the environment, you would do what?
 - a. Control for environmental variation
 - b. Control for overall variation
 - c. Control for genetic variation
 - d. Control of phenotypic variation

- 3. If you wanted to identify what proportion of trait variation is due to genetics, you would do what?

 a. Control for environmental variation

 - b. Control for overall variation
 - c. Control for genetic variation
 - d. Control of phenotypic variation

CONCEPT: HERITABILITY

- Heritability is the proportion of variation in a population that's due to genetic factors
 - □ It is a very _____ measurement that is only true for a certain population in a certain environment
 - It measures from 0 to 1, and the larger the value, the more variation is explained by genetic differences
 - Ex: h=0.65 means 65% of the overall population variation is explained by genetic differences in individuals
 - □ **Broad-sense heritability** measures the contribution of genotypic variance to total phenotypic variance
 - H2= V_G/V_P
 - A H² close to 1 = environmental conditions had little impact on variation
 - A H² close to 0 = environmental conditions had a major impact on variation

EXAMPLE: Calculate broad sense heritability for each trait

Trait	V _P	V _G	VA
Body Fat	40.5	16.9	7.66
Body Length	43.6	17.9	5.12

- □ Narrow-sense heritability measures the proportion of phenotypic variation due to additive genotypic variance
 - Additive variation (VA) is genetic variance caused by average differences between allelic characteristics
 - Dominant and recessive alleles have different characteristics
 - Dominance variance (V_D) is gene variance from heterozygotes not being intermediates of homozygotes
 - Heterozygotes are different than an intermediate between dominant and recessive homozygotes

-The	to know	are

- $h_2 = V_A/V_P$

 $-V_G = V_A + V_D$

EXAMPLE: Calculate narrow-sense heritability for each trait

Trait	V _P	V _G	VA
Body Fat	40.5	16.9	7.66
Body Length	43.6	21.7	5.12

Artificial Selection

- Artificial selection is the process of choosing specific individuals for phenotypic breeding purposes
 - □ Breeders use narrow-sense heritability to predict the impact of _____
 - The higher the h₂ value the more likely the breeder will observe a change in offspring

 \Box h₂ = R/S

- R = Mean of the offspring overall mean called **selection response**
- S = Mean of the parents overall mean called **selection differential**

EXAMPLE: Which of the following traits will respond best to selection by a breeder?

Trait	V _P	V _G	VA
Body Fat	40.5	16.9	7.66
Body Length	43.6	21.7	5.12

Twin Studies

Humans cannot be bred to determine heritability, so	studies are used
□ Monozygotic twins arise from a single zygote that mitotical	ally divides and splits into two cells
- Have same genetics, and therefore only exhibit env	rironmental variation
- But some genetic changes can occur in early development	opment (Ex: copy-number variations)
□ Dizygotic twins are from two separate fertilization events	
- Are genetically as close as any other sibling set, b	ut often share similar environment
$\hfill\Box$ Twin expression of a trait can be classified in two ways	
- Concordant is when both or neither twins express	a trait
- Discordant is when one twin expresses a trait but r	not the other

- 1. A chicken breeder has a population of chickens where the average number of eggs laid per hen per month is 34. The narrow-sense heritability is 0.75. With this information is it likely that a breeder could select for an increase in eggs per hen laid each month?
 - a. No, breeders never know whether they can select for a trait
 - b. No, the breeder will need to know the broad-sense heritability to determine whether selection could cause an increase in eggs?
 - c. Yes, because the narrow-sense heritability is 0.75, this means selection is likely to occur

GENETICS - CLUTCH

CH.20 QUANTITATIVE GENETICS

- 2. The narrow-sense heritability of the number of seeds per flower is 0.9. The mean of the population is 6.0 seeds per flower. A flower breeder crosses one flower with 7 seeds to another plant with 9 seeds. What is the expected number of seeds per flower in the offspring of this cross?
 - a. 5
 - b. 6
 - c. 7
 - d. 8

- 3. Heritability calculations were calculated for a variety of different traits. Which of the following traits would respond best to selection?
 - a. $H_2 = 0.8$, $h_2 = 0.3$
 - b. $H_2 = 0.3$, $h_2 = 0.3$
 - c. $H_2 = 0.9$, $h_2 = 0.8$
 - d. $H_2 = 0.5$, $h_2 = 0.9$

CONCEPT: QTL MAPPING

Quantitative trait loci (QTL) are locations of genes that control variation in complex (quantitative) □ Quantitative traits are any traits that can be measured (usually continuous)			
□ QTL Mapping is the method for determining QTLs in the genome			
□ The method of QTL is as follows:			
1. Mate two inbred lines with different traits (Ex: Tomato weight of 230g x tomato weight of 10g)			
- Produces intermediate F₁ generation			
2. Backcross F ₁ to the large tomato parents (230g)			
- Produces back-cross 1 generation (BC ₁)			
3. Take DNA samples and determine genotype of BC ₁ and Parental strains			
- Divide the genome into SNP markers			

- 4. Calculate weight for each BC₁ tomato
 - Calculate mean for all BC tomatoes
 - Calculate mean for all BC tomatoes with the same markers
- 5. Determine if QTL is affecting fruit weight
 - If no QTL is affecting fruit weight then the overall mean will equal the "marker mean"
 - If QTL is affecting fruit weight then overall mean will not equal the "marker mean"
- 6. Use **lod scores** to statistically confirm your hypothesis

EXAMPLE: Example data from QTL Mapping

Plant	Fruit Weight	Marker 1	Marker 2	Marker 3	Marker 4
Overall mean weight	176.3	-	-	-	-
Weight of L/L		176.5	178.6	182.1	175.9
Weight of L/S		174.5	173.4	168.4	172.3

- - □ There can be 100+ genes in between two genomic markers used for sequencing
 - □ Fine-mapping is the method used to determine the gene from the QTL
 - □ Use **congenic stocks** (**nearly-isogenic**): are identical, but contain crossovers near QTLs

QTL Mapping in Random-Mating Populations

- Association mapping can identify QTLs in genomes based on linkage disequilibrium between marker and QTL
 - □ **Linkage disequilibrium** is the nonrandom association of alleles at two loci (so alleles are not independent)
 - ☐ This method can be done in ______, as it tests many alleles at once & does not need crosses
 - It also does not require fine-mapping as it directly identifies the responsible gene at the QTL
 - ☐ The method of mapping using **genome-wide association studies** is as follows:
 - 1. Sequence genome of 2000 individuals with a disease and 2000 without a disease
 - Identify all SNPs in the genomes (HUGE amount of data)
 - 2. Statisticians determine if one SNP is more frequently associated with disease than other

- 1. Both QTL mapping and association (GWA) mapping are used to locate genes responsible for a phenotype. Which of the two techniques does NOT require crosses to produce a mapping population
 - a. QTL mapping
 - b. Association mapping

- 2. Both QTL mapping and association mapping are used to locate genes responsible for a phenotype. Which of the following typically tests two differing alleles between the parents of a mapping population?
 - a. QTL mapping
 - b. Association mapping

- 3. True or False: Association (GWA) mapping definitively proves that the gene identified is responsible for the trait variation or phenotype?
 - a. True
 - b. False