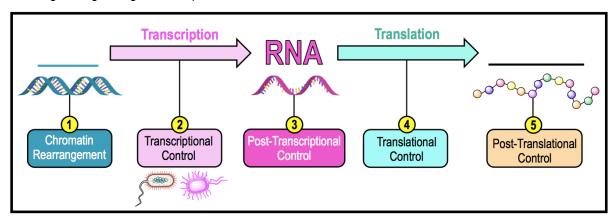


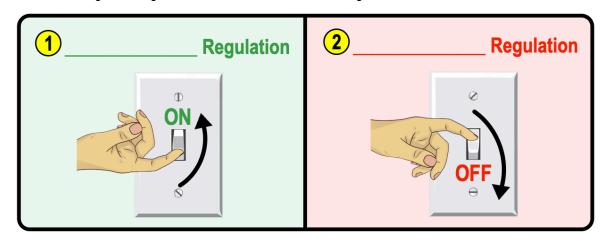
CLUTCH


www.clutchprep.com

CONCEPT: INTRODUCTION TO REGULATION OF GENE EXPRESSION

- Prokaryotic & eukaryotic cells both have the ability to regulate (or control) their gene
- Gene expression can be controlled at any of _____ stages:
 - 1 Rearrangements: regulates chromatin conformation & DNA's accessibility for transcription.
 - 2 Control: regulates RNA polymerase binding to a promoter & initiation of transcription.
 - □ Most _____ gene regulation occurs via *transcriptional control*.
 - -Transcriptional Control: regulates modifications to RNA after transcription.
 - **4 Control:** regulates initiation & elongation steps of translation.
 - **5 -Translational Control:** regulates modifications to proteins *after* translation.

EXAMPLE: 5 Stages Regulating Gene Expression.



• gene regulation can occur at any of these 5 stages.

Positive vs Negative Gene Regulation

- Cells regulate gene expression in ____ ways:
 - 1 Positive Regulation: stimulates gene expression by turning "_____" the gene.
 - 2 Negative Regulation: prevents gene expression by turning "_____" the gene.

EXAMPLE: Positive & Negative Regulation of a Gene Resembles a "Light Switch."

BIOLOGY - CLUTCH CH. 16 - REGULATION OF EXPRESSION

CONCEPT: INTRODUCTION TO REGULATION OF GENE EXPRESSION

PRACTICE: Post-translational control refers to:

- a) Regulation of gene expression after transcription.
- b) Regulation of gene expression after translation.
- c) Control of epigenetic activation.
- d) Period between transcription and translation.

PRACTICE: Which of the following is an example of positive regulation of gene expression?

- a) Transcription is halted on a specific gene to limit the amount of protein being created by the gene's expression.
- b) The protein that is translated is immediately degraded by the cell before it can serve its function.
- c) Elongation of translation comes to a stop and the ribosome dissociates when a regulatory protein binds.
- d) A protein binds to DNA and then stimulates the initiation of transcription of a specific gene.

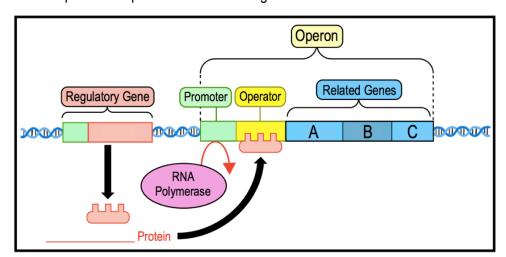
PRACTICE: In prokaryotes, control of gene expression usually occurs at the

- a) Splicing of pre-mRNA into mature mRNA.
- b) Post-translational control level.
- c) Transcriptional control level.
- d) All of the above.

BIOLOGY - CLUTCH

CH. 16 - REGULATION OF EXPRESSION

CONCEPT: PROKARYOTIC GENE REGULATION VIA OPERONS


Prokaryotes must survive in environments that constantly	in the availability of nutrients.
$\hfill\Box$ Requires them to rapidly change their metabolic pathways by	expression of certain genes
□ Prokarvotes commonly control expression of genes using	

Structure of an Operon

_	. 3 0	eatlaroun of	nrokaryotic (genes of related	function con	trolled by a ci	nala	nromotor
_	a s	sel/group or	prokaryono y	geries di relateu	iunction con	li Ulicu by a si	Hylo	promoter.

Transcription of the <i>operon</i> is regulated by the	region of DNA where regulatory proteins bind.
□ Regulatory protein: binds to the operator &	RNA polymerase binding to the promoter.
□ Repressor : regulatory protein that	RNA polymerase binding (preventing transcription).
□ Activator : regulatory protein that	RNA polymerase binding (stimulating transcription).

EXAMPLE: Structure of an Operon & Repressor Protein Binding.

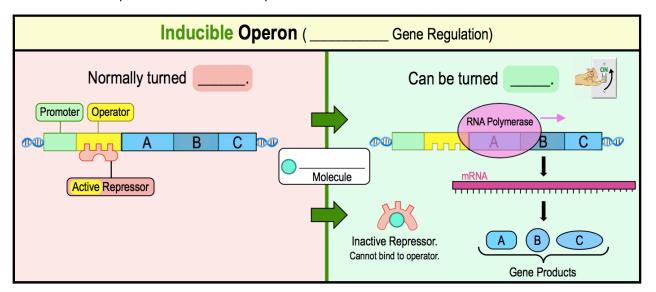
PRACTICE: Altering patterns of gene expression in prokaryotes would likely increase a prokaryote's survival by ______

- a) Organizing gene expression, so that genes are expressed in a given order.
- b) Allowing each gene to be expressed an equal number of times.
- c) Allowing a prokaryote to adjust to changes in environmental conditions.
- d) Allowing environmental changes to alter a prokaryote's genome.

PRACTICE: Which of the following is true about operons?

- a) They allow the organism the opportunity to simultaneously regulate transcription of multiple genes.
- b) They allow the organism the opportunity to regulate transcription of a single gene.
- c) They allow many genes to be expressed at the same time, even those unrelated in function.
- d) They significantly increase the rate of DNA replication, thereby make transcription more efficient.

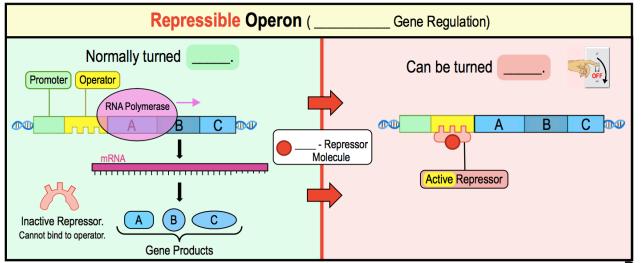
CONCEPT: PROKARYOTIC GENE REGULATION VIA OPERONS


Inducible Operons

• ______ Operon: normally turned "______" but can be turned "_____" (induced) in presence of inducer.

□ Active repressor protein represses transcription but can be inactivated by the ______ molecule.

□ In other words: the inducer inactivates the repressor protein, so transcription is turned _____.


EXAMPLE: An inducible operon is turned on in the presence of an inducer molecule.

Repressible Operons

Operon: normally turned "____" but can be turned "____" (repressed) by active repressor protein.
 Inactive Repressor protein can _____ repress transcription without a co-repressor.
 _-repressor: small molecule that binds to the repressor forming an active repressor protein.
 In other words, the co-repressor activates the repressor protein, so transcription is turned _____.

EXAMPLE: A repressible operon is turned off in the presence of a co-repressor molecule.

Page 5

CH. 16 - REGULATION OF EXPRESSION

CONCEPT: PROKARYOTIC GENE REGULATION VIA OPERONS

Review of Inducible vs. Repressible Operons

Туре:	Normally turned:	Can be turned:	Repressor protein normally:	Regulatory molecule:	Effect of regulatory molecule:	Example:
Inducible Operon			Operator		Repressor protein (transcription ON)	<i>lac</i> operon
Repressible Operon					Repressor protein (transcription OFF)	trp operon

PRACTICE: Which of the following molecules is a protein that stops the transcription of a gene?

- a) Operon.
- b) Inducer.
- c) Promoter.
- d) Repressor.

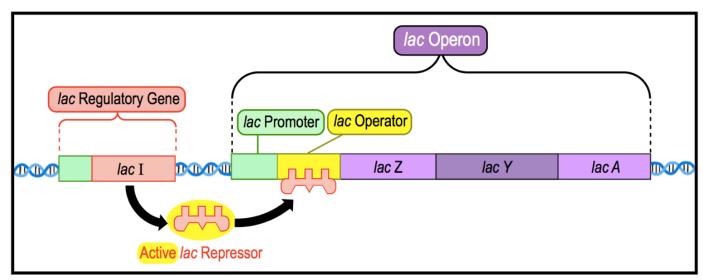
PRACTICE: When this is present in the cell, it binds to the repressor and the repressor can no longer bind to the operator:

- a) Operon.
- b) Inducer.
- c) Promoter.
- d) Repressor.
- e) Corepressor.

PRACTICE: Which of the following statements is FALSE?

- a) An inducible operon is turned on by the presence of an inducer molecule.
- b) An inactive repressor protein requires binding of a corepressor molecule to become active.
- c) A repressible operon is turned on when the repressor protein is not bound to the corepressor molecule.
- d) An active repressor protein is inactivated by the binding of an activator molecule.

BIOLOGY - CLUTCH


CH. 16 - REGULATION OF EXPRESSION

^	^	N			D.	т.	т	ш	г	1 /	٩C	\cap				\sim	٨	I
b	U	IN	ı	┎	Г	1.	- 1	п		L/	٦0	U	ירוי	ᆮ	К	U	I١	J

•	Operon: inducible operon with	genes encoding enz	for energy:	
	1) <i>lac</i>	2) <i>lac</i>	3) <i>lac</i>	
	□ Transcription & translation requi	re a lot of energy, so cells	only want to express lac ope	eron genes when needed.
The	active repressor protein ()	normally <i>represses</i> trans	cription when bound to <i>lac</i>	
	□ Only in the presence of	(& the absenc	e of glucose) is the lac opero	n transcribed.

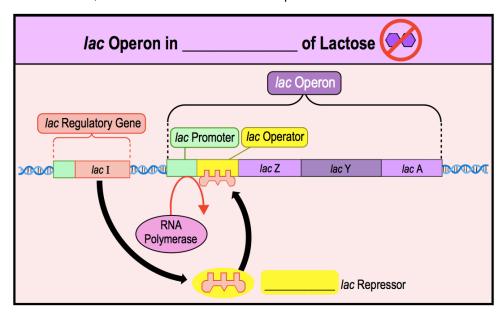
EXAMPLE: The Lac Operon in E. coli contains a single promoter & 3 genes required for lactose metabolism.

PRACTICE: The protein that binds to the operator of the lac operon to prevent transcription is encoded by which gene?

- a) lacI.
- b) lacY.
- c) lacA.
- d) lacZ.

PRACTICE: The *lac* operon is a(n) ______ operon that is typically _____.

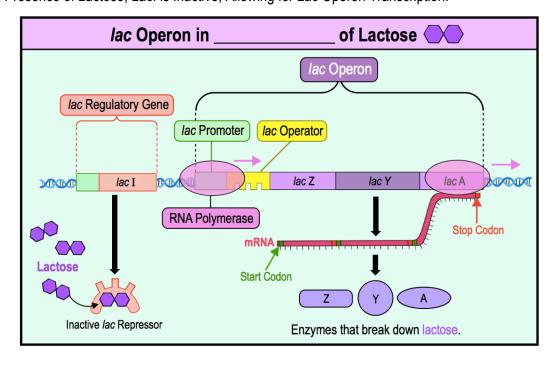
- a) inducible; induced.
- b) repressible; repressed.
- c) inducible; repressed.
- d) repressed; inducible.


CONCEPT: THE LAC OPERON

In the Absence of Lactose

•When **lactose** is not available to metabolize, <u>represses</u> the expression of genes in the *lac* operon.

□ **Lacl** binds to the *lac* operator & blocks *RNA polymerase* from initiating ______.


EXAMPLE: In Absence of Lactose, Lacl is Active & Blocks Transcription.

In the Presence of Lactose

- ●When lactose is readily available to metabolize, it acts as an ______ molecule in the lac operon.
 - □ A derivative of lactose binds & ______ Lacl so it cannot bind to the operator.
 - ☐ Allows *RNA polymerase* to initiate transcription of the *lac* operon.

EXAMPLE: In Presence of Lactose, LacI is Inactive, Allowing for Lac Operon Transcription.

BIOLOGY - CLUTCH CH. 16 - REGULATION OF EXPRESSION

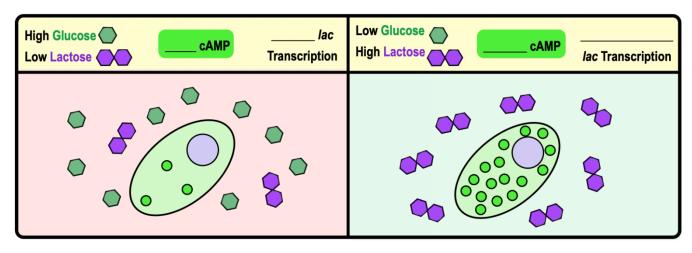
CONCEPT: THE LAC OPERON

PRACTICE: In the *lac* operon, which of the following functions does the lactose molecule serve:

- a) It is the corepressor molecule.
- b) It is the repressor molecule.
- c) It is the inducer molecule.
- d) It serves no function in regulating the *lac* operon.

PRACTICE: If *E. coli* bacteria are grown in the presence of lactose:

- a) The repressor will bind the operator allowing transcription of the lac operon genes.
- b) The repressor will not bind the operator preventing transcription of the lac operon genes.
- c) The repressor will not bind the operator allowing transcription of the lac operon genes.
- d) The repressor will bind the operator preventing transcription of the lac operon genes.



CONCEPT: GLUCOSE'S IMPACT ON LAC OPERON

Glucose Levels, cAMP, & the lac Operon

●In most prokaryotes,	is the preferred energy source even in the presence of lactose.
□ This means that if glucose is av	ailable, then the lac operon should be turned ""
• Glucose levels are linked to cellular levels	of a molecule called <mark>cyclic AMP ()</mark> .
□ When glucose is <i>low/absent</i> & r	ot available for metabolism, cellular levels of <mark>cAMP</mark>
□ <i>High</i> cellular <mark>cAMP</mark> levels	the rate of transcription of the lac operon.
□ cAMP levels do affect <i>i</i>	repressor protein's activity & only increase transcription when glucose is absent.

EXAMPLE: Glucose Levels Control cAMP Levels in the Cell, Which Controls Rate of Lac Operon Transcription.

EXAMPLE: Complete the table below:

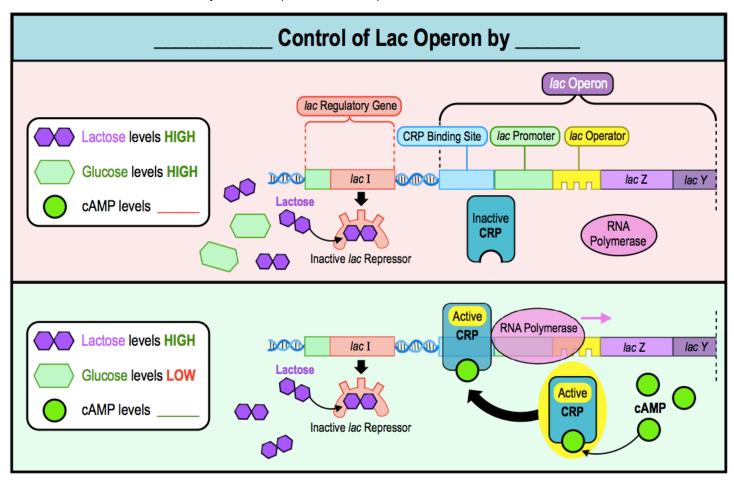
Environme	ntal Levels		Expressed?		
Glucose	Lactose	Glucose	сАМР	Lactose	lac Operon
HIGH	HIGH	HIGH	low		
HIGH	low			low	
low	HIGH	low			
low	low	low		low	

PRACTICE: How does extracellular glucose inhibit transcription of the lac operon?

- a) By strengthening the binding of the repressor to the operator.
- b) By weakening the binding of the repressor to the operator.
- c) By inhibiting RNA polymerase from opening the strands of DNA to initiate transcription.
- d) By reducing the levels of intracellular cAMP.

CONCEPT: GLUCOSE'S IMPACT ON LAC OPERON

Positive Control by cAMP & CRP


• Cyclic AMP Receptor Protein (_______ is an _______ protein of the lac operon when bound to cAMP.

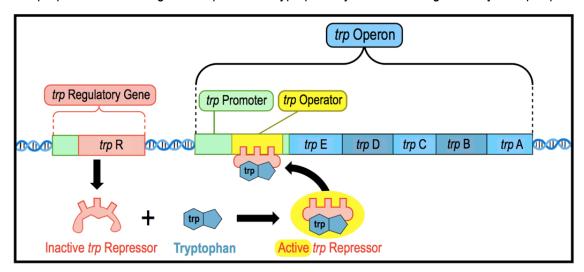
• Low Glucose levels = _____ cellular cAMP levels which binds to & activates CRP.

□ Active CRP binds to a region of DNA upstream of the lac _____ & recruits RNA polymerase.

□ _____ Glucose = ____ cAMP = ____ CRP = ____ Rate of Lac Operon Transcription.

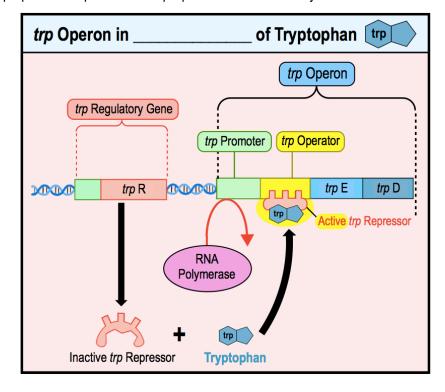
EXAMPLE: cAMP & CRP Positively Control Expression of *lac* operon.

PRACTICE: When glucose is present:


- a) cAMP is high, CRP binds to the activator binding site, and transcription of the *lac* operon is turned off.
- b) cAMP is low. CRP binds to the site activator binding site, and transcription of the *lac* operon is turned on.
- c) cAMP is high, CRP does not bind to the activator binding site, and transcription of the *lac* operon is turned on.
- d) cAMP is low, CRP does not bind to the activator binding site, and transcription of the *lac* operon is turned off.

CONCEPT: THE TRP OPERON

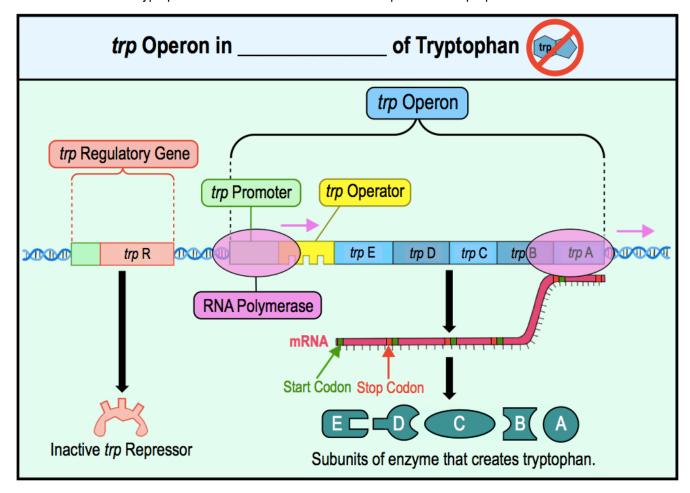
- Tryptophan (_____) is an amino acid that can be absorbed from the environment or synthesized by the cell.
- Operon: repressible operon with _____ genes encoding enzymes required for synthesizing Tryptophan.
- trp____: encodes the trp_____ protein which is expressed in the ______ form.
 - □ Inactive TrpR protein requires a _____ (usually Trp itself) in order to bind the operator.


EXAMPLE: The *trp* operon contains 5 genes required for Tryptophan synthesis & is regulated by the *trp* repressor.

In the Presence of Tryptophan

- ●When Tryptophan is abundant, the cell does not need to synthesize its own & the *trp* operon is _____
 - □ Tryptophan acts as a _____ that binds to & _____ the *trp* repressor protein.

EXAMPLE: Cellular Tryptophan co-represses the *trp* operon when it is readily abundant for the cell.


CONCEPT: THE TRP OPERON

In the Absence of Tryptophan

●When Tryptophan is *not* readily available the cell must ______ its own using enzymes from the *trp* operon.

□ When cellular Tryptophan levels are *low*, the TrpR remains ______, allowing for transcription.

EXAMPLE: Low cellular Tryptophan levels result in increased transcription of the *trp* operon.

PRACTICE: The trp operon consists of ______ genes that encode tryptophan biosynthesis enzymes.

- a) One.
- b) Two.
- c) Three.
- d) Four.
- e) Five.

PRACTICE: Under what conditions does the trp repressor block transcription of the trp operon?

- a) When the repressor binds to the inducer.
- b) When the repressor binds to tryptophan.
- c) When the repressor is not bound to tryptophan.
- d) When the repressor is not bound to the operator.

BIOLOGY - CLUTCH

CH. 16 - REGULATION OF EXPRESSION

CONCEPT: THE TRP OPERON

PRACTICE: If the *trp* regulatory gene mutates so that the repressor protein can no longer bind to tryptophan what will be the result?

- a) The *trp* operon will not be expressed.
- b) The *trp* operon will be continuously expressed.
- The trp operon will be expressed in the presence of tryptophan only.
- d) The *trp* operon will be expressed in the absence of tryptophan only.
- e) There will be no effect on the *trp* operon.

PRACTICE: In the absence of tryptophan, ____:

- a) The inducer cannot bind to the operator, so *trp* operon transcription occurs.
- b) The active repressor cannot bind to the operator, so *trp* operon transcription is reduced.
- c) The inactive repressor cannot bind to the operator, so *trp* operon transcription occurs.
- d) The repressor binds to the corepressor, and *trp* operon transcription occurs.
- e) The active repressor binds to the operator, so *trp* operon transcription is repressed.

PRACTICE: Based on the information you know about the *trp* operon, is the creation of tryptophan expensive to the cell?

- a) Yes, this is why tryptophan is the co-repressor of the *trp* operon.
- b) No, this is why tryptophan is the inducer of the *trp* operon.
- c) Yes, this is why tryptophan is the repressor of the *trp* operon.

CONCEPT: REVIEW OF LAC & TRP OPERONS

•Now let's review the *lac* and *trp* operons:

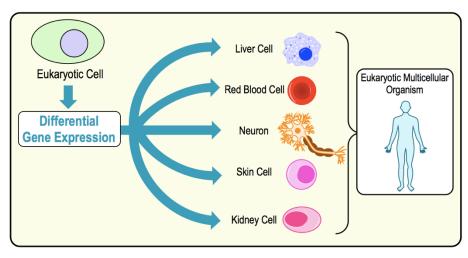
	lac Operon	<i>trp</i> Operon
Operon type		
# of Genes		
Function of operon genes	Lactose	Tryptophan
Repressor gene		
Regulatory molecule	(Inducer)	(Corepressor)
Effect of regulatory molecule	Repressor Protein Repressor Protein	Repressor Protein
Regulatory molecule Absent ×	Operon turned	Operon turned
Regulatory molecule Present ✓	Operon turned	Operon turned

PRACTICE: Which of the following statements is FALSE?

- a) The *lac* operon is an inducible operon that is normally turned off.
- b) The *trp* operon is a repressible operon that is normally turned on.
- c) Lactose is the inducer molecule for the *lac* operon.
- d) Tryptophan is the activator molecule for the *trp* operon.
- e) All of the above are true.

PRACTICE: Which of the following statements is TRUE?

- a) Lac I is the inducer molecule for the *lac* operon.
- b) Tryptophan is an inducer molecule for the *trp* operon.
- c) In the presence of lactose, the *lac* operon is expressed.
- d) In the presence of tryptophan, the *trp* operon is expressed.

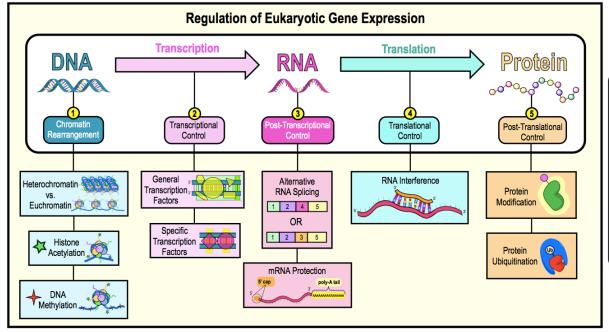

CH. 16 - REGULATION OF EXPRESSION

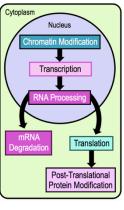
CONCEPT: INTRODUCTION TO EUKARYOTIC GENE REGULATION

- •Gene regulation in eukaryotes is extremely important to allow for ______ gene expression.
- Differential Gene Expression: process allowing multi-cellular organisms to express genes differently in different cells.
- All cells of a multi-cellular organism have the _____ genome/DNA, but a _____ proteome (set of proteins)

EXAMPLE: Liver cells and skin cells have the same DNA, but different genes are expressed.

PRACTICE: The process of cellular differentiation is a direct result of:

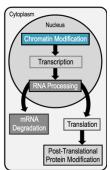

a) Differential gene expression.

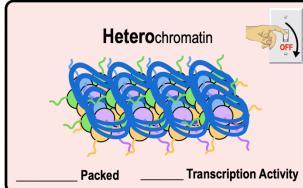

- d) Apoptosis.
- b) Mutations made in specific cells.
- e) Differences in cellular genomes.

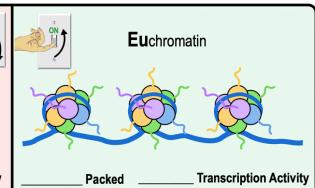
c) Different types of cell division.

Map of Eukaryotic Gene Regulation

Recall: Eukaryotic gene regulation occurs at any of these _____ stages:

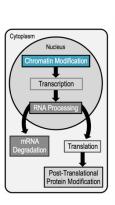


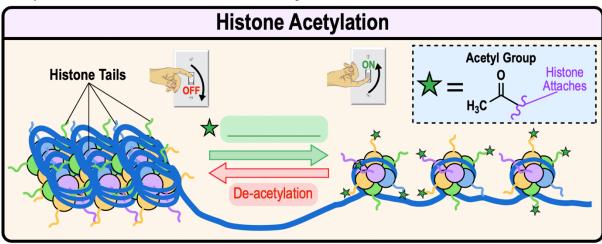



CONCEPT: EUKARYOTIC CHROMATIN MODIFICATIONS

- ●Eukaryotes can regulate gene expression by modifying the structure of their _____.
- Recall: Chromatin are _____ packed/coiled nucleosomes (DNA wrapped around units of ____ histone proteins).
 - □ Modifications to ______ proteins or _____ sequence are made to control transcription.
 - chromatin: condensed region of genome with low transcriptional activity.
 - chromatin: *lightly packed* region of genome with *high* transcriptional activity & histone/DNA modifications.

EXAMPLE: Heterochromatin vs. Euchromatin.





Histone Acetylation

- Histone proteins contain long polypeptide "______" that can be chemically modified by cellular enzymes.
 - □ The most common modification is ______: addition of an acetyl group.
 - □ *Histone acetylation* _____ the chromatin structure, making the DNA accessible to *RNA polymerase*.

EXAMPLE: Histone Acetylation Loosens Chromatin Structure, Forming Euchromatin.

•Removal of acetyl groups (de-acetylation) results in _____ packing of the chromatin structure (heterochromatin).

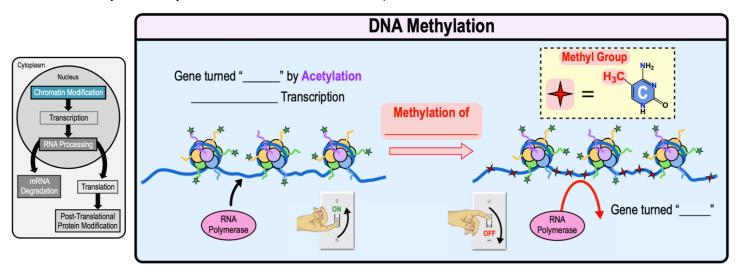
BIOLOGY - CLUTCH

CH. 16 - REGULATION OF EXPRESSION

CONCEPT: EUKARYOTIC CHROMATIN MODIFICATIONS

PRACTICE: Histone acetylation is associated with:

- a) Activate transcription in that region, RNA Polymerase can easily interact with DNA.
- b) Repressed transcription in that region, RNA Polymerase cannot easily interact with DNA.
- c) Tightly-packed nucleosomes.
- d) No change in chromatin structure or transcription rates.


DNA Methylation

In addition to h	istone modifications,	the sec	juence can also	be chemically	modified to rec	ulate transcri	ption.

□ Most common DNA modification is ______: addition of a *methyl group* to Cytosine (residues.

• DNA Methylation ______ transcription of by blocking RNA polymerase access to the promoter.

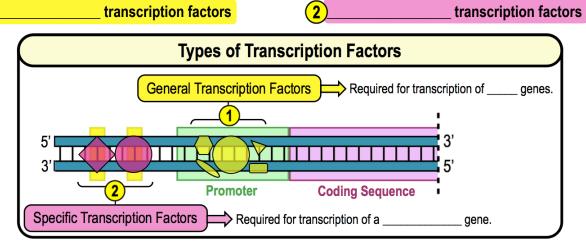
EXAMPLE: Methylation of Cytosine Nucleotides Blocks Transcription.

PRACTICE: Transcriptional repression by methylation of DNA involves the methylation of which nucleotide?

- a) Adenine.
- b) Uracil.
- c) Cytosine.
- d) Thymine.
- e) Guanine.

PRACTICE: Which of the following causes transcription to be increased for a specific gene?

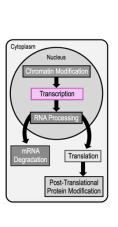
- a) Histones in that region are deacetylated.
- b) DNA is methylated in the regulatory region of the gene.
- c) Histones in that region are acetylated.
- d) The chromatin structure is tightly packed.
- e) B and D.

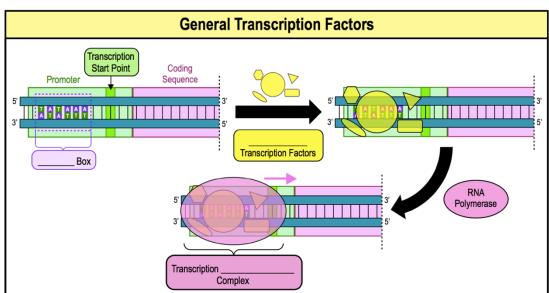


CONCEPT: EUKARYOTIC TRANSCRIPTIONAL CONTROL

• Eukaryotes can also regulate gene expression by utilizing _____-binding proteins that bind to regulatory regions in a gene.

Introduction to Transcription Factors


- Recall: transcription initiation in Eukaryotes requires a complex of transcription factors bound to the promoter sequence.
- •______Factors: proteins that bind to specific DNA sequences & regulate transcription initiation.
- There are _____ types of transcription factors in Eukaryotes:



General Transcription Factors

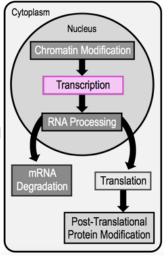
- Recall: ______ transcription factors: required for the transcription of every gene in the genome.
 - □ Recruits RNA polymerase to the _____ region of a gene
- Transcription Initiation complex (______): the entire complex of all general transcription factors & RNA polymerase.
 - Box: sequence of repeats located in the promoter that recruits the TIC.

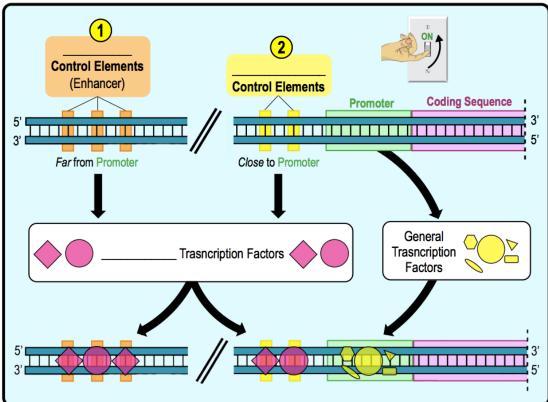
EXAMPLE: General transcription factors bind the TATA box in the promoter & recruit RNA polymerase for transcription.

CONCEPT: EUKARYOTIC TRANSCRIPTIONAL CONTROL

Specific Transcription Factors

• Recall: ______ transcription factors are only required for increasing the transcription of a specific gene.


Elements: regions of noncoding DNA where specific transcription factors bind.


1) Distal Control Elements: located _____ (distant) from the promoter sequence.

□ _____: groups of *distal* control elements.

2) Proximal Control Elements: located ______ to the promoter sequence.

EXAMPLE: Specific Transcription Factors can bind Distal or Proximal Control Elements.

PRACTICE: Regulatory segments of DNA that function to increase transcription levels in eukaryotes are called:

- a) promoters.
- b) silencers.
- c) enhancers.
- d) transcriptional start sites.
- e) activators.

BIOLOGY - CLUTCH CH. 16 - REGULATION OF EXPRESSION

CONCEPT: EUKARYOTIC TRANSCRIPTIONAL CONTROL

PRACTICE: Which of the following statements correctly describes the primary difference between enhancers and proximal control elements?

- a) Enhancers are transcription factors; proximal control elements are DNA sequences.
- b) Enhancers increase transcription of specific genes; proximal control elements inhibit transcription of specific genes.
- c) Enhancers are located thousands of nucleotides away from the promoter; proximal control elements are close to the promoter.
- d) Enhancers are DNA sequences; proximal control elements are transcription factors.

PRACTICE: Which of the following is NOT true regarding the differences of transcription in eukaryotes and prokaryotes?

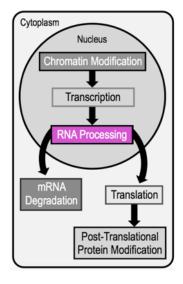
- a) Eukaryotes use multiple transcription factors to help initiate transcription.
- b) Most eukaryotes have regulatory sites that are close to their promoters.
- c) Most prokaryotes transcribe multiple genes under the regulation of a single operon.
- d) Prokaryotic transcription factors usually interact directly with RNA polymerase while eukaryotic transcription factors do not.

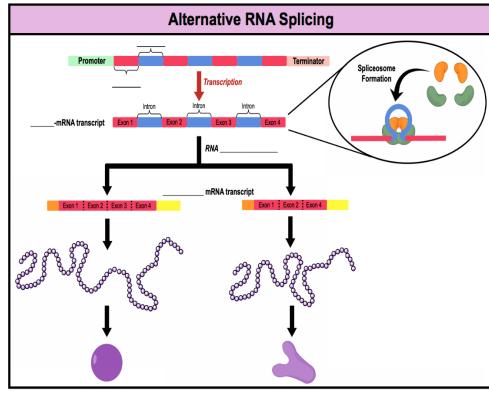
PRACTICE: Which of the following statements about transcription factors is **incorrect**:

- a) The transcription initiation complex is composed of RNA polymerase, general and specific transcription factors.
- General transcription factors help initiate transcription of all eukaryotic genes.
- c) Specific transcription factors do not bind the promoter of a gene, but to control elements associated with the gene.
- The transcription initiation complex associates with the TATA box of the promoter to begin transcription.

CONCEPT: EUKARYOTIC POST-TRANSCRIPTIONAL REGULATION

 Eukaryotes regulate gene expressi 	on at the post-transcriptional level in	ways:	
1)Alternative RNA	results in different protein pro	oducts from the same mRNA transcri	pt.


2 RNA processing adds a 5' _____ & poly-____ tail to mRNA for protection from RNA degrading enzymes.


3 mRNA can be tagged for degradation or transcription is blocked by small noncoding _____ molecules.

1) Alternative RNA Splicing

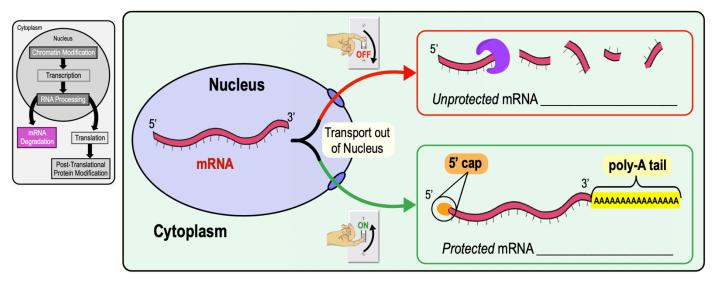
● <i>Recall:</i> Eukaryotes require	transcriptional modifications like RNA splicing which can alte	er gene expression.
□ Alternative splicing: when	n different mRNA molecules are produced from the	premature RNA.
□ The	: the RNA-protein complex that removes introns from premature	e RNA.

EXAMPLE: Alternative RNA splicing results in different protein products from the same premature RNA.

PRACTICE Alternative RNA splicing has been estimated to occur in more than 95% of multi-exon genes. Which of the following is **not** an evolutionary advantage of alternative RNA splicing?

- a) Alternative RNA splicing increases diversity without increasing genome size.
- b) Different protein variants can be expressed by the same gene in different tissues.
- c) Alternative RNA splicing creates shorter mRNA transcripts.
- d) Different protein variants can be expressed by the same gene during different stages of development.

CH. 16 - REGULATION OF EXPRESSION

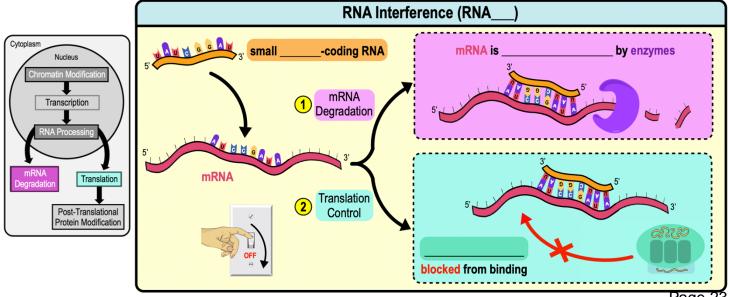


CONCEPT: EUKARYOTIC POST-TRANSCRIPTIONAL REGULATION

2) mRNA Protection in the Cytoplasm

- •mRNA transcripts must be transported to the ______ where they can be translated by ribosomes.
 - ☐ The cytoplasm has many RNA degrading enzymes destroy *foreign* viral RNA molecules.
- •The _____' cap & poly-A _____ of mRNA molecules ______ the mRNA from degradation by enzymes.

EXAMPLE: mRNA is protected from degradation by cytoplasmic enzymes with a 5' cap and poly-A tail.



3) RNA Interference

- •RNA ______(RNA__): process of small noncoding RNAs blocking translation of target mRNA molecules.
 - □ **Small noncoding RNA:** short strands of RNA that have a *complementary sequence* to their mRNA target.
- •There are _____ possible scenarios that turn gene expression OFF:

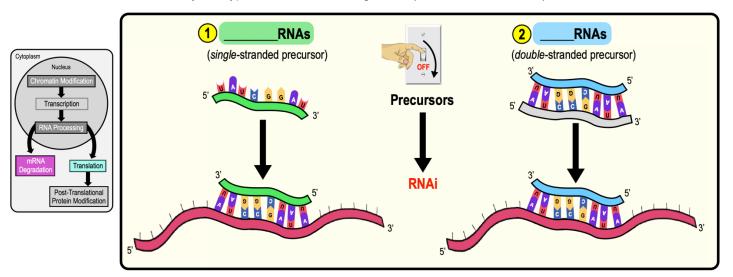
(1	mRNA is	OR	2 Ribosome is	from binding
----	---------	----	---------------	--------------

EXAMPLE: RNA Interference can block ribosome binding or recruit cellular enzymes for mRNA degradation.

CONCEPT: EUKARYOTIC POST-TRANSCRIPTIONAL REGULATION

PRACTICE: Which of the following statements best describes the function of RNAi?

- a) Small RNA molecules interfere with translation by targeting ribosomes for degradation.
- b) Small DNA molecules interfere with mRNA molecules by blocking their ability to bind to a ribosome.
- c) Small RNA molecules interfere with translation by targeting specific tRNA molecules
- d) Small RNA molecules interfere with translation by blocking a target mRNA's ability to bind to a ribosome.


Types of Small Noncoding RNAs

•There are ____ classes of RNAs involved in RNAi:

1	RNAs	2	small interfering RNAs (
·			/an interioring rain to (

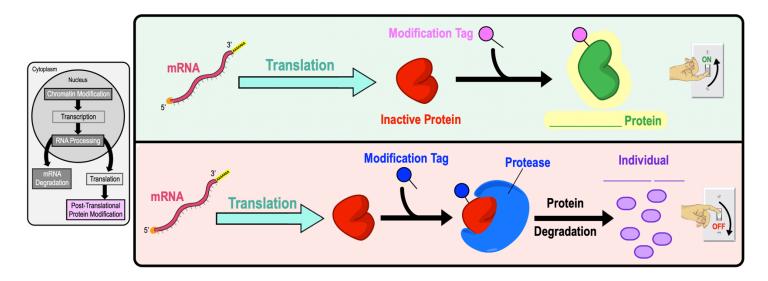
- □ BOTH types bind to a target mRNA by complimentary base paring & turns _____ expression of that gene.
- The only difference between microRNAs & siRNAs is the structure of their precursor form:
 - □ mircoRNAs have a ______-stranded precursor & siRNAs have a _____-stranded precursor

EXAMPLE: RNA interference by two types of small noncoding RNAs (microRNAs & siRNAs).

PRACTICE: Which of the following best describes siRNA?

- a) A short double-stranded RNA with one strand that can complimentarily bind to and inactivate an mRNA.
- b) A single-stranded RNA with internal complementary base pairs that allow it to fold into a cloverleaf pattern.
- c) A portion of rRNA which is a component of the large and small ribosomal subunits.
- d) A molecule, known as Dicer, that can degrade or cut RNA sequences.

BIOLOGY - CLUTCH


CH. 16 - REGULATION OF EXPRESSION

CONCEPT: EUKARYOTIC POST-TRANSLATIONAL REGULATION

Eukaryo	tes regulate expressi	on at the post		$_{\scriptscriptstyle \perp}$ by controlling activity of the expressed ${ m p}$	rotein.
	Recall: Post-translat	translational modifications (PTMs) are covalent modifications to proteins		_ translation	
● <i>PTMs</i> ca	an activate/inactivate	a protein or "	_ <mark>" the protein for d</mark>	egradation by Proteases.	
	1	_: enzymes that degra	de proteins by bre	aking polypeptide bonds making single a	mino acids.

EXAMPLE: Protein activity can be controlled by post-translational modifications or degradation by proteases.

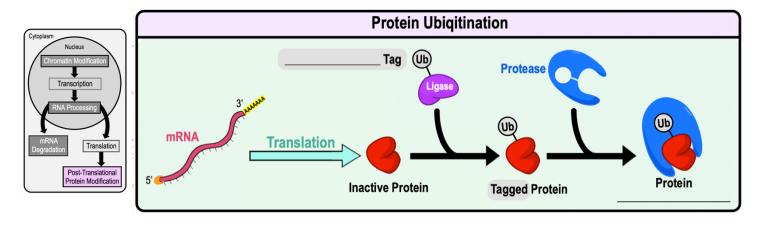
PRACTICE: Protein degradation is one strategy to control gene expression and is considered ______.

- a) Transcriptional control.
- b) Post-transcriptional control.
- c) Translation initiation control.
- d) Post-translational control.
- e) Chromatin remodeling.

PRACTICE: Post-translational modifications of proteins can affect which of the following?

- a) Protein function.
- b) Protein location within the cell.
- c) Protein activation or inactivation.
- d) Protein degradation.
- e) All of the above.

CH. 16 - REGULATION OF EXPRESSION



CONCEPT: EUKARYOTIC POST-TRANSLATIONAL REGULATION

Protein Ubiquitination

- Eukaryotes need a way to _____ which proteins in a cell are no longer needed & can removed.
- ●Cells utilize PTMs to "tag" specific proteins in a cell to be ______ by cellular *proteases*.
 - small peptide used by Eukaryotic cells to mark proteins for degradation.
 - □ **Ubiquitin** : cellular enzyme that adds the *ubiquitin* peptide to the target protein.

EXAMPLE: Ubiquitin ligase adds a ubiquitin peptide to a mis-folded or non-functioning protein.

PRACTICE: A hormone signal reaches a cell and causes the cell to produce a large quantity of Protein X. After some time, the hormone signal disappears and the cell no longer needs a large quantity of Protein X. How will the cell remove the excess protein?

- a) The repressor protein for the Protein X gene will stop the transcription of the gene.
- b) The excess Protein X will be tagged with ubiquitin proteins and degraded over time.
- c) The Protein X mRNA will be bound by a microRNA blocking its translation.
- d) Over time the excess Protein X will diffuse out of the cell.